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The scheduling and execution of ramp area operations is a challenging task. Unlike
aircraft maneuvers on taxiways, ramp area aircraft maneuvers are typically not confined
to well-defined trajectories. The stochastic nature can force ramp area aircraft to slow
down or stop along routes to the taxiway spot to avoid a loss of separation. To address
this, we provide a tool for ramp controllers to help meet the assigned taxiway spot times.
We formulate a mixed integer linear program model to compute the optimal push back
windows that ensure conflict free trajectories. Initiating the push back within the optimal
window ensures each departing aircraft can proceed along the route to the taxiway spot
without having to slow down or stop for other traffic.

I. Introduction

In order to keep up with the increase of traffic density and reduce congestions on the surface of airports,
new techniques are required to improve airport throughput while maintaining safe separation among taxiing
aircraft. Since key airports that accommodate a large portion of traffic operate at or close to their maximum
capacity, an optimization of runway and taxiway operations is necessary.1 However, although their operations
can be improved by adopting an optimal taxiway schedule, its execution ultimately depends on human
controllers who control aircraft maneuvers in both ramp area and taxiways.2

Most of the prior research on taxiway scheduling has focused on modeling an airport as a graph, i.e., a
connected network, with aircraft travelling along the graph edges. In order to solve the optimization problem
on the graph authors have used genetic algorithms,3,4 Mixed Integer Linear Programs (MILPs),5 hybrids
of these,6,7 constrained search algorithms,8 and generalized dynamic programming algorithms.9 The MILP
approach has been used in10,11,12,13,14,15,16,17 to optimize the routing and scheduling of airport surface
traffic. The approach has been applied in18,19 where an optimization model is formulated for taxi scheduling
at Dallas-Fort Worth International Airport (DFW). Similar work20 has formulated the problem to include
uncertainties related to constraint satisfaction while uncertainties in aircraft taxiing has been considered
in.21,22,23 These previous works have addressed uncertainties in the active movement area (runways and
taxiways), but do not consider the ramp area. Ramp area aircraft have been incorporated in,24,25 but the
trajectories are considered to be deterministic. This paper attempts to address the integration of uncertain
ramp area aircraft trajectories with a state-of-the-art optimal taxiway scheduler. To the best of our knowl-
edge, this research is the first attempt to address the taxiway scheduler problem assuming stochastic ramp
area aircraft trajectories.26
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Figure 1. A) Layout of Dallas-Fort Worth International Airport (DFW) with ramp area outlined in green.
Departing aircraft push back from their gates and taxi to the departure queue via the taxiway spot. B) Zoomed
in view of the green Terminal C ramp area. The departure trajectories from the gate to the taxiway spot
(blue) that were sampled from the stochastic model of aircraft trajectories are shown.

The main difficulty in the integration of ramp area aircraft trajectory characteristics into an optimal
taxiway scheduling solution is in addressing uncertainties of ramp area trajectories. Unlike aircraft maneuvers
on taxiways, ramp area aircraft maneuvers are typically not confined to well-defined trajectories. The shape
and timing of the trajectories are subject to uncertainties resulting from pilots decisions as well as other
factors involved in ramp area operations, which can impede upon an optimal taxiway schedule plan.

In our previous work26 we accounted for trajectory uncertainties by developing a stochastic model of
aircraft trajectories. The stochastic model was used to generate a probabilistic measure of conflicts within
the ramp area, see Fig. 1. The conflict distributions were then used to conservatively schedule conflict free
trajectories at the taxiway spot. This method was applied to the DFW Terminal C ramp area to generate
optimal schedules for departing aircraft.26 The method was also applied to the center alley of the Charlotte
Douglas International Airport ramp area to generate optimal schedules for both departing and arriving
aircraft.27

Our previous work has taken a conservative approach to separating aircraft. Using the conservative
scheduling approach, we only consider schedules for aircraft i and j that have a zero ratio of conflict. A
conflict ratio is estimated by fixing the relative schedule of the two aircraft and computing the ratio of
conflicting trajectories to the total number of feasible trajectories. In this paper we build upon our previous
work and develop an optimization framework that exploits the structure of the conflict distributions in order
to increase the throughput of the optimal schedule.

The throughput of the schedule can be improved upon by considering schedules that have a non-zero
ratio of conflicts. For schedules that have a non-zero ratio of conflict, we formulate a MILP that returns the
optimal combination of push back sub-windows that ensure conflict free trajectories. We apply the MILP
to scheduling departing aircraft within the DFW Terminal C ramp area. We then analyze the increase of
throughput that is available when compared to our previous conservative scheduling approach.

This paper is organized as follows. In section II we formulate the optimization problem under considera-
tion. In section III we define the MILP model that we use to solve for the optimal combination of push back
sub-windows. Then we provide solutions of the MILP and demonstrate the increase of throughput that can
be achieved over the conservative schedule. We then analyze the computational performance of the MILP
in comparison to a brute force algorithm that solves for the optimal combination of push back sub-windows.
In the last section, we conclude with a discussion of our findings and provide directions for future work.

II. Problem Formulation

The right panel of Fig. 1 shows the DFW Terminal C ramp area. Departing aircraft i begins parked
at one of three possible gates labeled with A, B and C. Trajectories that begin from gate B can push
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Figure 2. A) Conflict distributions with select cross sections color coded. B) Plot of conflicts between aircraft
A(i) and BR(j) for schedules ranging from tBR − tA = −70 to tBR − tA = 40 at a resolution of 10 seconds. For
the scheduled difference tBR − tA = −60 two conflict free sub-windows are shown in black solid(dotted) lines.

back with either a left or a right push back maneuver, labeled as BL and BR, respectively. The stochastic
model trajectory samples contain spatial and temporal uncertainty and are colored to illustrate the family of
possible trajectories. Using the stochastic trajectories we compute a probabilistic measure of conflict among
aircraft i and j defined by the difference between their scheduled times at the spot, tj − ti. The computed
conflict distribution is defined by a ratio of the number of pairs of conflicting trajectories to the total number
of sampled trajectory pairs. The conflict distribution is estimated by computing the conflict ratio at every
whole second, see Fig 2.

For the scheduled spot time differences that have a non-zero ratio of conflicts, we can store and plot
the combination of push back times that lead to conflicts. In Fig. 2B the vertical axis represents the push
back time of aircraft A(i), PBA, and the horizontal axis represents the push back time of aircraft BR(j),
PBBR. In Fig. 2 we color select cross sections to demonstrate the relationship between the ratio of conflicts
(Fig. 2A) defined by the difference between their scheduled spot times and the set of red conflict points
(Fig. 2B) defined by the combination of push back times that lead to conflicts for the given difference
between their scheduled spot times tj − ti.

The combinations of push back times that lead to conflicts between aircraft A(i) and BR(j) are plotted
(see Fig 2B) in 10s increments for the spot time differences ranging from tj − ti = −70 to tj − ti = 40. Given
that we are interested in the scheduled spot time difference between two aircraft, we fix the spot time of
aircraft A(i) such that tA = 0, and the difference in the scheduled spot time is defined by the spot time of
aircraft BR(j). Associated with each difference in scheduled spot time, i.e., tBR = −70, is a green rectangle
that is defined by the earliest and latest feasible push back times for each aircraft such that the spot time
of the schedule is satisfied. Thus, in order to satisfy the spot time tA = 0, aircraft A(i) must push back
within the window PBA ∈ [−162,−102] and to satisfy the spot time tBR = −70 aircraft BR(j) must push
back within PBBR ∈ [−217,−180]. For −70 there is a set of combination of push back times that lead to
conflicts. These combinations are labeled as red points within the green rectangle (see Fig. 2B).

Consider the distribution of red conflict points for the scheduled spot time difference of −60 seen in
Fig. 2 right panel. We observe that in the bottom right of the green rectangle there is a large area that
does not contain any red conflict points. If we restrict aircraft A(i) and B(j) to push back within the lower
right corner of the green rectangle then we can ensure conflict free trajectories. Two potential solutions are
shown where the first solution is shown with a solid black line and the second solution with a dotted black
line. Among all possible solutions we would like to find a combination of push back time windows where the
minimum time window is maximized. The abstract form of the optimization problem is defined as

max
tSi ,t

F
i ,t

S
j ,t

F
j

J := min{tFi − tSi , tSj − tFj } (1)

subject to: ∀ κ = (x, y) :
[
x 6∈ [tSj , t

F
j ] ∨ y 6∈ [tSi , t

F
i ]
]

(2)
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where the cost function J is a function of the four variables tSi , t
F
i , t

S
j , t

F
j which represent the earliest and

latest push back times for aircraft i and j, respectively. Thus, for aircraft i the variables tSi and tFi represent
the start and finish of the push back window. The four variables together define a combination of push back
sub-windows such as the windows labeled with the solid (dotted) black lines. The optimization problem is
subject to the constraints that any given conflict point κ = (x, y) can not be contained within the optimal
combination of push back sub-windows. For any given schedule, at a resolution of 1[s], we consider solving
for the optimal combination of push back sub-windows that are constrained to contain no conflicts.

III. Mixed Integer Linear Program (MILP)

Here we provide the mathematical formulation of the abstract optimization problem formulated by ex-
pressions (1) and (2). Given any two aircraft i and j, the objective function (1) is used to maximize the
minimum time window for both aircraft. While this seems like a reasonable objective function there is a
slight problem with this formulation. With this objective function we can not distinguish between two time
windows that have equal minimum edge length, as illustrated in Fig. 3A.

In Fig. 3A the minimum edge of the orange combination of time windows and the minimum edge of the
blue combination of time windows are equal and defined by tSj and tFj . Clearly, we would prefer the orange
combination of time windows to the blue as aircraft i has a much larger time window to push back within.
In order to distinguish between these two solutions we introduce the objective function

max
tSi ,t

F
i ,t

S
j ,t

F
j

J :=
[
M + ε(tFi − tSi + tFj − tSj )

]
(3)

where M = min{tFi −tSi , tSj −tFj } is the minimum time window among both aircraft i and j and ε is sufficiently
small. In the objective function the extra term multiplied by ε is added in order to distinguish between two
combinations of time windows that have equal minimum edge lengths. Using the objective function (3)
with the example depicted in Fig. 3A, we can distinguish between the orange and blue combination of
time windows and the orange combination would be selected as optimal. The optimization constraints are
described in sequel.

For departing aircraft i, j ∈ D we introduce the two constraints

tFi − tSi −M ≥ 0 (4)

tFj − tSj −M ≥ 0 (5)

that ensure the push back time window for aircraft i and the push back time window for aircraft j are both
greater than the minimum time window M . We note that the value M is not a fixed value, but a function
of the four variables we solve for.

Similarly, for departing aircraft i, j ∈ D we introduce the two constraints

tFi − tSi − δmin ≥ 0 (6)

tFj − tSj − δmin ≥ 0 (7)

that ensure the push back time windows for aircraft i and j are both larger than a predefined value δmin.
The value δmin is the minimum acceptable push back window. For example, pilots and ramp area ground
crew could find a schedule that requires aircraft to initiate push back within a window of 5 seconds too
restrictive to consistently execute. In this paper we use the value δmin = 25[s] when solving for the optimal
sub-windows. The correct value should be determined in conjunction by ramp area controllers and pilots.

For departing aircraft i, j ∈ D we introduce the four constraints

tSi − ti − tS0i ≥ 0 (8)

tFi − ti − tF0
i ≤ 0 (9)

tSj − tj − tS0j ≥ 0 (10)

tFj − tj − tF0
j ≤ 0 (11)

where ti is the taxiway spot time of aircraft i and tS0i and tF0
i are the earliest and latest feasible push back

times for aircraft i such that the scheduled spot time ti = 0 is enforced. The same definitions apply to the
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Figure 3. A) The cost function in objective (3) is a function of 4 variables (tSi , t
F
i , t

S
j , t

F
j ). The minimum edge

length of the blue combination of time windows is equal to the minimum edge of the orange combination
of time windows. By adding the extra term εΣi,jt

F
i/j
− tS

i/j
in the cost function we can distinguish between

the two rectangles and the orange rectangle is selected as optimal. B) Set of 4 constraints that ensure the
optimal combination of push back sub-windows is either above, below, left or right of any single conflict point
κ = (PBBR, PBA).

variables for aircraft j. For the scheduled spot time ti = 0, the earliest feasible push back time is defined
by tS0i = −maxi (Ti) and the latest feasible push back time is defined by tF0

i = −mini (Ti) . The variable
Ti is the trajectory duration of aircraft i that is sampled from the stochastic model. For any given relative
schedule, the earliest and latest feasible push back times define the green edges of the rectangle that are
seen in Fig. 2. The distribution in trajectory duration is estimated from the robot experiment data which is
directly influenced by the human operator.

Constraints (8) - (11) ensure that for any given combination of spot time schedules, given by ti and tj ,
the start and end of the push back sub-windows defined by tS and tF must be within the bounds defined by
the earliest and latest feasible push back times. This implies satisfying these constraints ensures that there
exists a feasible trajectory for aircraft i/j that is capable of meeting the scheduled spot times ti/tj without
accounting for conflicts. These four constraints provide that the push back windows that we solve for, which
are illustrated in black solid (dotted) lines in Fig. 2, are indeed sub-windows of the original green rectangle.

To solve for the optimal push back sub-windows we need information related to the set of conflict points.
For example, the conflict points could be used to estimate a distribution that defines the probability of
conflict as a function of the combination of push back times. The conflict points could also be used to fit a
piecewise linear boundary that separates the level set of conflicting combination of push back times from the
level set of conflict-free combination of push back times. In contrast to these approaches, we use the conflict
points directly to generate constraints.

The constraints we use are based on an idea that no conflict point should be a convex combination of
the optimal combination of time window endpoints. The conflict point κ = (x, y) is a convex combination
of the optimal time window endpoints of aircraft i if and only if

αtFi + (1− α) tSi = y, α ∈ [0, 1]

This implies that we can enforce that point κ is not a convex combination of tSi and tFi by choosing a value

5 of 12

American Institute of Aeronautics and Astronautics

D
ow

nl
oa

de
d 

by
 N

A
SA

 A
M

E
S 

R
E

SE
A

R
C

H
 C

E
N

T
E

R
 o

n 
Ju

ly
 6

, 2
01

5 
| h

ttp
://

ar
c.

ai
aa

.o
rg

 | 
D

O
I:

 1
0.

25
14

/6
.2

01
5-

30
28

 



of α that is either smaller than 0 or greater than 1. For departing aircraft i, j ∈ D, we enforce the following
set of seven constraints for each conflict point κ = (PBBR, PBA).

ακ1t
F
i + (1− ακ1) tSi = PBA (12)

zκ1

[
ακ1 − 1

]
≥ 0 (13)

zκ2

[
ακ1

]
≤ 0 (14)

ακ2t
F
j + (1− ακ2) tSj = PBBR (15)

zκ3

[
ακ2 − 1

]
≥ 0 (16)

zκ4

[
ακ2

]
≤ 0 (17)

zκ1 + zκ2 + zκ3 + zκ4 = 1 (18)

where zκ is a binary variable. The constraints (12)-(18) ensure that the conflict point κ = (PBBR, PBA) is
not a convex combination of the optimal time window endpoints tSi and tFi nor a convex combination of the
optimal time window endpoints tSj and tFj . By enforcing this set of constraints we ensure that the conflict
point κ is not a convex combination of the optimal combination of push back time window endpoints.

The constraints in equations (12)-(17) can be simplified. From constraints (12)-(14) we can write ακ1 as a
function of the conflict point κ and the start and end of the push back sub-windows, tSi and tFi , respectively.

ακ1(PBA, tSi , t
F
i ) =

PBA − tSi
tFi − tSi

Substituting the function ακ1(PBA, tSi , t
F
i ) into constraint (13) provides us with the equation

PBA − tSi
tFi − tSi

≥ 1

which can be enforced by satisfying the inequality

PBA ≥ tFi
Similarly we can substitute the function ακ1(PBA, tSi , t

F
i ) into constraint (14) which provides us with the

equation

PBA − tSi
tFi − tSi

≤ 0

which can be enforced by satisfying the inequality

PBA ≤ tSi
Following the same reason, we can transform the three constraints (15)-(17) into the two constraints

PBBR ≥ tFj
PBBR ≤ tSj

Putting everything together we obtain the following set of five constraints that can be used instead of the
seven constraints (12-18) for each conflict point κ = (PBBR, PBA).

zκ1

[
tFi − PBA

]
≤ 0 (19)

zκ2

[
tSi − PBA

]
≥ 0 (20)

zκ3

[
tFj − PBBR

]
≤ 0 (21)

zκ4

[
tSj − PBBR

]
≥ 0 (22)

zκ1 + zκ2 + zκ3 + zκ4 = 1 (23)
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The set of constraints (19)-(23) enforces that the conflict point κ is not a convex combination of the start
and end times of the optimal combination of sub-windows defined by (tSi , t

F
i , t

S
j , t

F
j ). Geometrically speaking,

this set of five constraints ensures that any feasible combination of sub-window is either above, below, left
or right of the conflict point κ, shown in Fig. 3.

In the optimization problem defined by objective (3) subject to constraints (4)-(11) and (19)-(23), for
every conflict point κ we have four nonlinear constraints (19)-(22). These constraints can be linearized as

tFi − PBA − (1− zκ1)S ≤ 0 (24)

tSi − PBA + (1− zκ2)S ≥ 0 (25)

tFj − PBBR − (1− zκ3)S ≤ 0 (26)

tSj − PBBR + (1− zκ4)S ≥ 0 (27)

where the value of S is sufficiently large. By replacing the nonlinear constraints (19)-(22) with the linear
constraints (24 )-(27) we obtain a MILP problem that we can pass directly to Gurobi Optimizer28 to solve.
The mixed integer linear program that we pass to Gurobi is defined as

max
tSi ,t

F
i ,t

S
j ,t

F
j

J :=
[
M + ε(tFi − tSi + tFj − tSj )

]
(28)

for aircraft i, j we generate the eight constraints

tFi − tSi −M ≥ 0 (29)

tFj − tSj −M ≥ 0 (30)

tFi − tSi − δmin ≥ 0 (31)

tFj − tSj − δmin ≥ 0 (32)

tSi − ti − tS0i ≥ 0 (33)

tFi − ti − tF0
i ≤ 0 (34)

tSj − tj − tS0j ≥ 0 (35)

tFj − tj − tF0
j ≤ 0 (36)

and for each conflict point κ = (PBj , PBi) we generate the five constraints

tFi − PBi − (1− zκ1)S ≤ 0 (37)

tSi − PBi + (1− zκ2)S ≥ 0 (38)

tFj − PBj − (1− zκ3)S ≤ 0 (39)

tSj − PBj + (1− zκ4)S ≥ 0 (40)

zκ1 + zκ2 + zκ3 + zκ4 = 1 (41)

IV. MILP Optimal Time Window Solutions

Figure 4 illustrates the optimal combination of push back sub-windows for aircraft A(i) and BR(j).
Solutions are computed for the differences of taxiway spot times of departing aircraft with a resolution of
1 second. The optimal solution for the scheduled spot time difference tj − ti = 23[s] is shown in Fig. 4A
and the solution for the scheduled spot time difference tj − ti = −39[s] in Fig. 4B. The optimal combination
of push back sub-windows are labeled by the purple rectangles, which are by definition within the green
rectangles and contain no red conflict points.

The two solutions in Fig. 4 demonstrate a key property of our MILP problem formulation. In Fig. 4A the
conflict points appear as a single cloud while the conflict points in Fig. 4B appear to form two disjoint clouds.
Our MILP approach addresses the challenge of computing the boundaries around conflict points. Our MILP
approach is appealing as the complexity and structure of the clouds of conflict points is not known a priori.

Figure 5 provides the minimum time-separation at the taxiway spot between aircraft i and j that ensures
conflict free trajectories. In the graph, the directed edge ei−j represents the minimum time separation when
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Figure 4. A) Optimal combination of push back sub-windows for the scheduled spot time difference tj−ti = 23[s].
B) Optimal combination of push back sub-windows for the scheduled spot time difference tj − ti = −39[s].
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16
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MILP: �min = 25

Figure 5. LEFT: Minimum time separation at the taxiway spot using the conservative conflict separation
constraints. RIGHT: Minimum time separation at the taxiway spot using the optimal combination of push
back sub-windows. Here we assume that the minimum push back time window that we are willing to accept
is given by δmin = 25.

scheduling aircraft i followed by j. Figure 5A and 5B provide the minimum time separation for a conservative
approach and the MILP approach, respectively. The conservative approach is defined to separate aircraft at
the taxiway spot such that there is a zero ratio of conflicts. For the conflict distribution seen in Fig. 2A, for
example, we can see that edge eA−BR = 37 and eBR−A = 123. The MILP formulation exploits the structure
of the conflict points and allows us to reduce the minimum time separation between aircraft i and j for all
possible sequences.

The minimum-time separation graph in Fig. 5 can be used to schedule aircraft at the taxiway spot.26

Using a MILP approach, the minimum-time separation can be enforced with constraints, and schedules can
be computed to optimize the uninterrupted flow of departure traffic from the gate to the departure queue.
Using the conservative graph as constraints, the optimal schedule is computed as tA = 0, tB = 37 and
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Algorithm 1 Brute Force Algorithm

Set OptCost = 0
Set left = tj − tS0j
Set right = tj − tF0

j

for tSj = left:right − δmin do

for tFj = left + δmin : right do

• Solve for tSi and tFi that provides the largest vertical window that contains no conflict points.
• cost = min[tFi − tSi , tFj − tSj ] + ε(tFi − tSi + tFj − tSj )
if cost > OptCost then
• OptCost = cost
• OptWindows = (tSi , t

F
i , t

S
j , t

F
j )

end if
end for

end for
Return OptWindows

MILP 100 200 300 400 500 
10,000 0.60 1.82 4.35 9.35 14.77 
40,000 0.68 2.36 5.75 9.28 18.46 
90,000 0.73 2.73 7.22 12.29 15.90 
160,000 0.70 2.47 7.01 15.25 18.39 
250,000 0.77 2.66 10.27 17.98 20.26 

BF 100 200 300 400 500 
10,000 1.29 3.71 5.46 6.23 8.70 
40,000 4.86 10.74 26.64 32.57 39.20 
90,000 20.54 41.21 35.97 60.56 93.88 
160,000 38.49 51.95 101.40 145.79 171.50 
250,000  53.99 112.91 168.21 190.42 266.95 

A
re

a
of

D
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n

Number of Points in Domain

A) B)

A
re

a
of

D
om

ai
n

Number of Points in Domain

Figure 6. A) Average computation time in seconds of the MILP and the brute force algorithm for problems
with variable domain area and variable number of points. B) Contour plot of the difference between the
computation time of the brute force algorithm and MILP. A positive value implies that the brute force
algorithm took longer to execute than the MILP.

tC = 37 + 41 = 78 where aircraft B pushes back with a right push back maneuver. Using the MILP graph
as constraints the optimal schedule is defined as tB = 0, tA = 13 and tC = 13 + 26 = 39 where aircraft
B pushes back with a left push back maneuver. In this scenario the MILP approach provides an increase
of throughput of 2 times over the conservative approach. This increase in throughput comes at the cost of
smaller push back windows for each aircraft.

V. Computational Performance of the MILP

Here we compare the performance of the MILP with a brute force algorithm for computing the optimal
combination of push back sub-windows. The brute force algorithm systematically walks through the green
domain searching for feasible combinations of sub-windows.

The brute force algorithm pseudo code is presented in Algorithm 1. We initialize the optimal cost to
zero. Given the scheduled spot time of aircraft j, tj , we know the value of the left and right borders of our
green rectangle and store those values as left and right. We then enter a nested for loop where the outer
loop goes through the values of tSj and the inner loop goes through tFj . Once the values for tSj and tFj have

been selected, we can solve for the variables tSi and tFi that provide us the largest push back interval that is
conflict free for the fixed values of tSj and tFj .
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Once we have the four values (tSi , t
F
i , t

S
j , t

F
j ) we can use the cost function in objective (3) to compute

a cost. We then compare this cost to the previously known optimal cost. If the computed cost is greater
than the previously known optimal cost we store the computed cost as the known optimal and store the four
variables (tSi , t

F
i , t

S
j , t

F
j ) that define the combination of sub-windows. When the algorithm ends we return

the optimal sub-windows that contain no conflicts.
We measure the computation time of the two algorithms where the area of the domain is variable and the

number of conflict points is variable. Because we are interested in the computation time we solve a sample
problem where the area of the feasible domain is considered to be d2 for d = 100s, 200s, .., 500s. For a fixed
domain size, we randomly sample k = 100, 200, .., 500 points from the uniform distribution defined within
the domain and use both the MILP and brute force algorithm to solve for the optimal combination of push
back sub-windows. For a fixed domain size and fixed number of points, we repeat the routine of randomly
sampling points from the uniform distribution a total of fifty times and average the computation time.
Figure 6A reports the average computation time of the two algorithms on a 1.6 GHz Intel(R) Core(TM) i7
running MATLAB 2011b.

Figure 6B illustrates the difference in the computation time of the brute force algorithm and the MILP.
The contour lines are plotted illustrating the gradient in the difference in computation time. A positive
value indicates that the MILP executed in less time than the brute force algorithm. The contour plot is
color coded where the color red (blue) illustrates where the MILP outperforms the most (least). Figure 6B
shows that the brute force only outperforms the MILP for a small subset of problems defined by a small
area of domain and a large number of conflict points. As can be seen by the shape of the contour lines,
the difference in computation time is affected by changes in both the area of the domain and the number of
conflict points.

VI. MILP Computation Time for Solutions of Multiple Aircraft

In section III we formulated a MILP that returns the optimal combination of push back sub-windows for
fixed taxiway spot schedules of two aircraft. Here we apply the MILP for fixed taxiway spot schedules of
more than two aircraft. We assume that we are given the taxiway spot times for n aircraft, t1, t2, .., tn, and
the optimal solution is a combination of push back windows for all aircraft 1, 2, .., n.

The objective function is defined by (28) where the summation is over n aircraft. Constraints that are
seen in equations (29)-(36) are generated using Algorithm 2 and constraints that are seen in equations (37)-
(41) are generated using Algorithm 3. The number of constraints that are passed to the MILP is a function
of the number of conflict points. For every conflict point κ, we generate five constraints that ensure the
conflict point is not a convex combination of the optimal push back intervals.

Figure 7 illustrates the computation time on a 1.6 GHz Intel(R) Core(TM) i7 running MATLAB 2011b
for taxiway spot schedules of n = 4, 5, 6 aircraft. The computation time is shown as a function of the
maximum number of pairwise conflict points that we allow within the domain. As can be seen in the figure,
the computation time of the MILP significantly increases with the increase in the number of aircraft.

VII. Conclusion and Future Work

In this paper we formulated a MILP to solve for the optimal combination of push back sub-windows.
Solutions were constrained to be conflict free in the presence of trajectory uncertainties. The MILP was
used to solve for the optimal combination of push back sub-windows for any scheduled spot time difference
at a resolution of 1 second.

We analyzed example solutions that illustrate the ability of the MILP to solve for the push back sub-
windows regardless of the complexity of the distribution of conflict points. This is critical as the shape and
structure of the conflicts is not known a priori. Using the computed solutions we generated a minimum
time-separation graph for different sequence of aircraft. We compared the MILP minimum-time separation
graph to the conservative minimum-time separation graph. We found that the throughput of the conservative
schedule can be significantly increased within the ramp area by exploiting the structure of the conflict points.

Now that we understand how to exploit the structure of the conflicts, we would like to integrate the
MILP with a state-of-the-art optimal taxiway scheduler. This would allow for the optimal planning of
surface operations from the runways all the way to the gate. We would also like to improve upon the
computational performance of the MILP. We will also investigate new techniques to reduce the computation
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time of the MILP, a critical component for any real time application.

Figure 7. Computation time of solutions for taxiway spot schedules of n = 4, 5, 6 aircraft.

Algorithm 2 Multi Aircraft Initial Constraint Generation

For every aircraft i we generate the initial constraints
for i = 1:NumAircraft do

tFi − tSi −M ≥ 0
tFi − tSi − δmin ≥ 0
tSi − ti − tS0i ≥ 0
tFi − ti − tF0

i ≤ 0
end for

Algorithm 3 Multi Aircraft Conflict Constraint Generation

For every pairwise conflict between aircraft i and j we generate the constraints
for i = 1:NumAircraft -1 do

for j = i+1:NumAircraft do
for κ =1:NumConflicts do

tFi − PBi − (1− zκ1)S ≤ 0
tSi − PBi + (1− zκ2)S ≥ 0
tFj − PBj − (1− zκ3)S ≤ 0

tSj − PBj + (1− zκ4)S ≥ 0
zκ1 + zκ2 + zκ3 + zκ4 = 1

end for
end for

end for
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20Anderson, R. and Milutinović, D., “An approach to optimization of airport taxiway scheduling and traversal under

uncertainty,” Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, Vol. 227,
No. 2, February 2013, pp. 273–284.

21Atkins, S., Brinton, C., and Jung, Y., “Implication of Variability in Airport Surface Operations on 4-D Trajectory
Planning,” Proceedings of the 8th AIAA Aviation Technology, Integration, and Operations (ATIO) Conference, Anchorage,
AK, 2008.

22Ravizza, S., Atkin, J. A. D., Maathuis, M. H., and Burke, E. K., “A combined statistical approach and ground movement
model for improving taxi time estimations at airports,” JORS , Vol. 64, No. 9, 2013, pp. 1347–1360.

23Gupta, G., Malik, W., and Jung, Y. C., “Effect of Uncertainty on Deterministic Runway Scheduling,” 11th AIAA Aviation
Technology, Integration, and Operations (ATIO) Conference, Virginia Beach, VA, 2010.

24Lee, H. and Balakrishnan, H., “Optimization of Airport Taxiway Operations at Detroit Metropolitan Airport (DTW),”
In AIAA Aviation Technology, Integration, and Operations Conference (ATIO), Fort Worth, TX, 2010.

25Lee, H. and Balakrishnan, H., “A Comparison of Two Optimization Approaches for Airport Taxiway and Runway
Scheduling,” In Digital Avionics Systems Conference, Williamsburg, VA, 2012.
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